

# VICTREX® 450 FE20 PEEK

## FDA Compliant Bearing Grade

### DESCRIPTION

**Victrex® 450 FE20** is an innovative PTFE modified polyetheretherketone, developed to offer wear resistance plus conformability. It bridges the gap between rigid PEEK and low friction, yet soft, PTFE. It offers quiet operation for non-lubricated bearings requiring FDA compliance. Its limiting PV is 2x that of unfilled PEEK, 50% lower coefficient of friction, and wear that is 25% of unfilled PEEK. It performs best in dry running bearing applications.

#### TYPICAL APPLICATIONS:

- FDA compliant bushings and bearings
- High-temperature wear pads
- Analytical components like rotors

Material Notes: 450 FE20 contains 20% PTFE powder and is well-suited for direct food contact or life science applications.

### **EXTRUDED SHAPES PROPERTIES**

| PHYSICAL PROPERTIES                     | METRIC                                 | IMPERIAL                               | METHODS                       |
|-----------------------------------------|----------------------------------------|----------------------------------------|-------------------------------|
| Specific Gravity                        | 1.44 g/cc                              | 0.053 lb/in <sup>3</sup>               | ASTM D792                     |
| Water Absorption                        | 0.05%                                  | 0.05%                                  | Immersion, 24hr; ASTM D570(2) |
| Water Absorption at Saturation          | 0.3%                                   | 0.3%                                   | Immersion; ASTM D570(2)       |
| MECHANICAL PROPERTIES <sup>1</sup>      |                                        |                                        |                               |
| Hardness, Rockwell M                    | 100                                    | 85                                     | ASTM D785                     |
| Hardness, Rockwell R                    | 125                                    | 115                                    | ASTM D785                     |
| Hardness, Shore D                       | 92                                     | 86                                     | ASTM D2240                    |
| Tensile Strength, Ultimate              | 83 MPa                                 | 12,000 PSI                             | ASTM D638                     |
| Elongation at Break                     | 10%                                    | 10%                                    | ASTM D638                     |
| Tensile Modulus                         | 2,758 MPa                              | 400,000 PSI                            | ASTM D638                     |
| Flexural Modulus                        | 4,828 MPa                              | 700,000 PSI                            | ASTM D790                     |
| Flexural Yield Strength                 | 103 MPa                                | 15,000 PSI                             | ASTM D790                     |
| Compressive Strength                    | 103 MPa                                | 15,000 PSI                             | 10% Def.; ASTM D695           |
| Compressive Modulus                     | 2,758 MPa                              | 400,000 PSI                            | ASTM D695                     |
| lzod Impact (notched)                   | 36.8 J/m                               | 0.7 ft-lbs/in                          | ASTM D256 Type A              |
| THERMAL PROPERTIES                      |                                        |                                        |                               |
| Glass Transition Temp./T <sub>g</sub>   | 150° C                                 | 302° F                                 | ASTM D3418                    |
| Coefficient of Linear Thermal Expansion | 4.9 x 10 <sup>-5</sup> C <sup>-1</sup> | 2.7 x 10 <sup>-5</sup> F <sup>-1</sup> | ASTM E831                     |

<sup>&</sup>lt;sup>1</sup>The mechanical properties of extruded shapes may differ from the values published by resin producers. Published resin data is always generated from test specimens injection molded under optimum conditions. Drake's extruded shape values are generated using specimens machined from actual shapes and may reflect surface imperfections from machining, enhanced crystallinity as a result of processing, and fiber alignment inherent in all reinforced plastic shapes, regardless of process. For additional information on the effects of fiber alignment, see Drake Fiber Orientation Diagram, available on the Resource page of our website.